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Stoichiometric intramolecular lithium-, magnesium-, and zinc-
ene reactions and the trapping of the resulting cyclized metallic
intermediates with electrophiles have been widely utilized for the
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Initially, we carried out the reaction dfwith 2,7-enynyl ethers
2 having a (R2S5R)-menthyl or (R,29-trans2-phenyl-1-
cyclohexyl moiety, which, however, resulted in low chiral
induction as shown in eq 1. It was apparent from these results
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R = (1R,25,5R)-menthyl 82%R:S = 52:48*
(1R,25)-trans-2-phenyl-1-cyclohexyl 779, 41:59

that a simple ether functionality combined with modest steric
biases far removed from the reacting center, would have minimal
influence on the stereochemistry of the reaction.

The experiments were then focused on the substrates of those
having, as a leaving group, a chiral acetal moiety wih
symmetry, since this kind of chiral acetal has been successful in

synthesis of polysubstituted cycloalkanes and the correspondingdi'€cting asymmetric transformations with a variety of organo-

natural product3.As can be seen in Scheme 1 (path a), the

Scheme 1.Metallo-ene and Its Synthetically Equivalent
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metallics® A representative series of chiral acetélsas prepared
from tridec-7-yn-2-enal and the corresponding optically active
diol and subjected to the reaction withThe reaction proceeded
smoothly to afford the cyclized productas a mixture ofe-
andZ-enol ethers in excellent combined yield, where the former
was predominant irrespective of the acetal moiety (Scheme 2).
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The resulting enol ether mixture was converted into the dimeth-
ylacetal6 (Scheme 2) without separation and/or after separation

reaction generates a stereogenic center(s) on the ring; hoyvever(in some cases, partly), and its enantiomeric excess (ee) was
it seems difficult to carry out these metallo-ene reactions in an getermined by GC analysis using a chiral column (Chirasil-DEX
asymmetric manner, and thus far, no successful results have beegg): meanwnile, its absolute stereochemistry was established by
reportedt Recently, we have reportegpropene)Ti(O-Pr), (1)- correlation to the known compouiSél (see Scheme 3). The results
mediated intramolecular cyclization of 2,7- or 2,8-dienyl and 5re summarized in Table 1.

-enynyl et.her.s affording cyclized Fitanium cqmpounds. The As can be seen from Table 1, tB#Z ratio of 5 and theR/S
resulting titanium compounds readily react with electrophiles r4iig of 6 are apparently related to each other, which is most
including aldehydes; thus, the reaction can be used as a synthetigtstanding in the case of the five-membered acetals, where they
equivalent, at least in part, to stoichiometric metallo-ene reactions gre aimost coincident with each other regardless of the substituent
(path b in Scheme 1). Since this cyclization reaction probably of the acetal (entries 1, 2, and 4). This result strongly suggests

proceeds through, successively, the intermediatasd Il and
subsequent elimination of the OBroup, we were interested in

that the absolute configurations 6fderived fromE- or Z-5 are
opposite from each other and the degree of the ee of Boémd

carrying out the reaction in an asymmetric way by starting with 7.5 js good to excellent. We confirmed this in several cases where

substrates having an optically active QfRoup. We selected the

pureE and/orZ-5 could be isolated as shown in entries 3, 5, and

enynyl ethers, since the chiral induction might be induced only g i Table 1.

at the step of the transformation from the intermediate II .
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Table 1. Ti(ll)-Mediated Intramolecular Cyclization Reaction 4f

5 6°
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Me. o
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Ph fo)
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PR O
e 83 pure E 98:2
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Me,
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31 pure E 4.3:95.7
8 de 24 4/96  96.3:37
Ph
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—0,
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2 |solated yield. NMR yield in parenthesé<Determined byH NMR
spectroscopy: Yield from 5 to 6 was>70%. ¢ Decided by GC analysis.
¢ Use of CITi(Oi-Pr) instead of Ti(OFPr), gave very similar results
with respect to the yield anB/Z ratio of 5, and R/S ratio of 6. For
entry 1, theE/Z ratio of 5a was 60/40 and th&/Sratio of 6 was 60/
40. For entry 5, the 76% yield d&-5c with 96% ee and 12% vyield of
Z-5c with 98% ee were obtained.

Scheme 3.Several Synthetic Transformations Bf5c
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By taking advantage of the versatility of the enol as well as
the olefin functionality, the produ@-5c (96% ee) could be readily
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Scheme 4.Trap of the Resulting Vinyltitanium Derived from
1 and4c with |, or Aldehydes
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We have also confirmed that the resulting organotitanium
derived froml and4c can be trapped with iodine and an aldehyde,
providing 11 and 13, respectively, as illustrated in Scheme 4.
Noteworthy is the high yield cf1 with a pureE-enol ether moiety
that was readily obtained after separation from Zrisomer by
column chromatography.

This synthetic equivalent of a stoichiometric intramolecular
asymmetric metallo-ene reaction appears to be broad in scope.
An oxygen atom can be accommodated in the chain (€qrag
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reaction is also applicable to the synthesis of optically active
cyclohexane compounds as represented by the cyclization of 2,8-

enynyl acetall6to 17° (eq 3). The stereochemistry of this reaction,

’7 CsH11 n-CsHyy n-CsHyy
OH
()]
Ph™ 2) Hzo Ph™
E- 17 Z17

21%, 6% ee* 46%, >98% ee*

however, is somewhat different from that of the cyclizatiodof
the major isomer of the resulting enol ether has Zheonfigu-
ration, and the ee value @£17 is excellent whereas that &17
is very low. Meanwhile, the major isomers of bdi andZ-17
have the sameSf-configuration.

In conclusion, the titanium(ll)-mediated cyclization of 2,7- and
2,8-enynyl chiral acetals provides an efficient method for
synthesizing optically active polysubstituted cyclopentanes or
-hexanes. Synthetic applications of the present asymmetric
cyclization and investigations to confirm the mechanistic rationale
of the reaction are now in progress in our laboratory.
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